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Abstract:
In this paper we present an on-line evolving fuzzy cloud-based identification method. The
evolving part of the algorithm is improved with new mechanisms. In the part of adding clouds
(fuzzy rules) a new condition is implemented in addition to existing ones. Moreover, completely
new mechanism for removing the “less active” and “less informative” clouds is introduced. All
these mechanisms prevent adding new clouds based on outliers or at least help deleting existing
ones with little information. The cloud-based method uses vectorized non-parametric antecedent
(IF) part which relies on the local density of the current data with the existing clouds. The
parameters of the consequent (THEN) part (functional in this case) were identified using
recursive Weight Least Square method.
The comparison between the original and the improved algorithm was provided on simulated
data input/output signals acquired from Tennessee Eastman (TE) benchmark process. Firstly,
most representative production Performance Indicators (pPIs) were chosen, then for each pPI
a model was identified. The provided results (quality measures) of the proposed method were
evaluated using on-line and off-line 4-step prediction. These were further compared with the
results obtained using eFuMo identification tool.
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1. INTRODUCTION

Controlling a modern production systems requires not only
the basic technological functions but also model based
(data-driven) control of influential performance indicators
of interest. The new developments of predictive manufac-
turing (Lee et al., 2013) tend to improve the functionality
and effectiveness by exploiting knowledge contained in the
collected data. Other analysis methods are applied to fault
detection and diagnosis for industrial process operation
(Qin, 2012; Zhang et al., 2015). The applicability of the
data-based methods could be improved by considering the
system dynamics. Model based fault detection combines
the data-driven methods with model-based approaches
(Precup et al., 2015). As dynamic models are required,
the system identification methods play a crucial role.

Fuzzy modeling is well established technique for approx-
imating and describing complex and non-linear system
behavior. One of the most popular tool is Takagi-Sugeno
(TS) fuzzy model (Takagi and Sugeno, 1985). Construct-
ing the TS model requires identifying of the membership
functions of the antecedent part and the local model’s pa-
rameters of the consequent part. The identification of such

models can be done in an on-line or an off-line manner.
In the past few decades a significant number of on-line
identification techniques were proposed relying on fuzzy
logic (eTS by Angelov and Filev (2004), exTS by Memon
et al. (2006), FLEXFIS by Lughofer and Klement (2005),
switching eTS by Kalhor et al. (2013), etc.).

Simplest form for the antecedent part was proposed by
Angelov and Yager (2011). This new fuzzy rule based
(FRB) system, named ANYA, uses non-parametric vec-
torized antecedent part. It is based on data clouds (sets of
previous data samples close to each other) while the mem-
bership functions are calculated using relative data density
of the current data with the existing clouds. Moreover,
the method is able to evolve the structure (adding new
fuzzy rules). Originally the evolving mechanism relies on
global data density, while in this paper just local density
threshold is used. In the recent years ANYA FRB system
was used for solving control problems (Angelov et al., 2013;
Škrjanc et al., 2014; Costa et al., 2013; Andonovski et al.,
2015b) and as a tool for model identification (Rosa et al.,
2014; Ali et al., 2012; Blažič et al., 2014, 2015).
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In this paper we propose an improved evolving mecha-
nisms for protecting of adding new clouds (rules) based on
outliers. Moreover, a new mechanism for removing “less
active” and “less informative” clouds is introduced. The
activity is a property of the cloud and it is defined as rela-
tive number of the data samples associated with particular
cloud from its creation. While the other mechanism delete
the clouds which obtained less information in comparison
with the other clouds.

The proposed cloud-based identification method was
tested on input/output data acquired from Tennessee
Eastman (TE) (Downs and Vogel, 1993) process model.
The TE system is a complex nonlinear, open-loop unstable
process and it consists of 41 measured and 12 manipulative
variables. Please refer to (Downs and Vogel, 1993) for
detail description of the TE process. The production ob-
jectives of the systems are usually defined through the pro-
duction performance indicators (pPIs). For the TE process
as the first pPI, an estimation of the production Cost was
defined by Downs and Vogel (1993). In the (Glavan et al.,
2013a,b) the other two pPIs were defined as Production
and Quality. Furthermore, the authors selected the most
relevant manipulative input variables (see Table 1).

Table 1. Process manipulative variables se-
lected by Glavan et al. (2013b).

Notation Controlled variable setpoints

Fp Production rate index
R2 Striper level
R3 Separator level
R4 Reactor level
R5 Reactor pressure
R7 %C in purge
R8 Recycle rate
R9 Reactor temperature
r2 D/E feed rates

This paper is organized as follows. In Section 2 the cloud-
based identification method is presented, while in Section 3
an improved evolving mechanism for adding and removing
clouds is presented. Section 4 introduces the experimental
results and at the end, in Section 5 the main ideas and
results are concluded.

2. CLOUD-BASED IDENTIFICATION OF A
DYNAMIC SYSTEM

2.1 Fuzzy rule-based model

Fuzzy systems are sufficient approximation tools for mod-
eling non-linear dynamic processes. In this paper we
use the fuzzy rule-based system with non-parametric an-
tecedent part presented by Angelov and Yager (2011). The
main difference is the simplified antecedent part which
relies on the data relative density. The rule-based form
of the ith rule is defined as:

Ri : IF (xf ∼ Xi) THEN yi(k) = fi(xf ) (1)

where the data sample (regression vector) is xf (k) =
[y(k − 1), . . . , y(k − na), u(k − 1), . . . , u(k − nb)] for parti-
tioning of the problem space and the variables y and u de-
note system input and output, respectively. The operator
∼ is linguistically expressed as ’is associated with’, which

means that the current data xf is related with one of the
existing clouds Xi according to the membership degree
(normalized relative density of the data). The input and
the output order are denoted with na and nb, respectively.
Note that the input u(k) does not have immediate influ-
ence to the output y(k). The partial NARX model of the
ith rule is defined as:

fi(k) = θT
i ψk (2)

where the vector ψk = [xf , 1]
T

consists of the regres-
sion vector xf (used for partitioning the data space)
to which we usually add a regressor 1. The vector of
parameters of the ith cloud (rule) is denoted as θT

i =[
ai1, . . . , a

i
na
, bi1, . . . , b

i
nb
, ri

]
. Once we have declared all the

parameter vectors θT
i for each cloud (i = 1, . . . c) we could

define the output of the system in a compact matrix form:

y(k) =
c∑

j=1

βj(xf )θ
T
j ψk = βT (xf )Θ

TΨ(k) (3)

where c is the number of clouds (fuzzy rules), βT (xf ) =[
β1, β2, . . . , βc

]
is the vector of normalized relative densi-

ties determined between the current data xf and all ex-
isting clouds, and βT will be discussed in next subsection.
The matrix Θ = [θ1, θ2, . . . ,θc] ∈ R(1+na+nb)×c contains
the vectors of parameters for all the existing clouds 1 .

2.2 Identification of the antecedent part

In this subsection we will describe identification method of
the non-parametric antecedent part of the fuzzy rule-based
system ANYA (Angelov and Yager (2011)). The method
starts with zero fuzzy rules (clouds) and the first cloud
is initialized with the first data xf received. For each of
the following data the normalized relative densities βi are
calculated and then the current data is associated with one
of the existing clouds (according to the maximal density
βi, where i = 1, . . . c) or a new cloud is added (evolving
mechanism).

Before calculating the vector β we need to calculate the
local relative density which is defined by a suitable kernel
over the distances between the current data xf (k) and
all the data previously associated with the cloud. The
Euclidean distance (dikj = �xf (k)−xi

f (j)�) was chosen in

this case (also used by Angelov and Yager (2011), Angelov
et al. (2013), Škrjanc et al. (2014)), but any other distance
could be also used, e.g. Mahalanobis distance was used by
Blažič et al. (2014) and Blažič et al. (2015).

The local density γi
k of the current data xf (k) with the

ith cloud is defined by Cauchy kernel as follows:

γi
k =

1

1 +

∑Mi

j=1
(di

kj
)2

Mi

(4)

where M i is the number of the data points that belong to
the ith cloud. Equation (4) should be rewritten in recursive
form for easier implementation as follows:

γi
k =

1

1 + �xf (k)− μi
k�2 + σi

k − �μi
k�2

i = 1, . . . , c (5)

1 We use the therm of ’existing clouds’ because this method evolves
and number of clouds changes when some requirements are fulfilled.
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where μi
k and σi

k denote mean value vector and mean-
square length of the data vector from ith cloud, respec-
tively. Both of them, μi

k and σi
k, can therefore be recur-

sively calculated as:

μi
k =

M i − 1

M i
μi

k−1 +
1

M i
xf (k) (6)

σi
k =

M i − 1

M i
σi
k−1 +

1

M i
�xf (k)�2 (7)

The mean value and the mean-square length of the data
vectors for each new cloud are initialized as μi

0 = xf (k)
and σi

0 = �xf (k)�2, respectively. We have to note here
that the properties, μi

k and σi
k, of the chosen cloud are

only updated by using (6) and (7), while the properties of
all other clouds are kept constant.

Once we have calculated the local densities γi
k where

i = 1, . . . , c we can calculate the degree of membership
of the current data xf (k) with the cloud Xi. This is done
according to the normalized relative local density which is
defined as follows:

βi(xf (k)) =
(γi

k)
c∑

j=1

(γj
k)

i = 1, . . . , c (8)

where c is the current number of existing clouds.

2.3 Identification of the consequent part

In the previous subsection we updated the properties, μi
k

and σi
k, of the chosen cloud and we calculated the degree of

membership βi(xf (k)). Moreover, in the Subsection 2.1 we
mentioned that for the consequent part we use a NARX
model, which parameters are updated (identified) using
the Recursive Weighted Least Squares (rWLS) method:

ψk = [xf (k), 1]
T

P i
k =

1

λr

(
P i

k−1 −
βi
kP

i
k−1ψkψ

T
k P

i
k−1

λr + βi
kψ

T
k P

i
k−1ψk

)

θi
k = θi

k−1 + P i
k−1ψkβ

i
k

(
y(k)−ψT

k θ
i
k−1

)
i = 1, . . . , c (9)

where ψk is the extended regression vector, while the
second and the third lines in (9) represent the updating
mechanisms of the covariance matrix P i

k and model pa-
rameters θi

k, respectively. Parameter λr ≤ 1 stands for the
exponential forgetting factor, where data which appears
p samples ago, is weighted by (λr)

p (Nelles, 2001). The
parameter λr also prevents that covariance matrix P i

k
becomes too small. It is initialized with a large positive def-
inite matrix, usually a diagonal one (P i

0 = αI, α � 1, I ∈
R(1+na+nb)×(1+na+nb)). Once we have identified/updated
the parameters of the consequent part in the kth step, we
calculate the estimated output as follows:

ŷ(k) =

c∑
j=1

βj(xf (k))θ
T
j ψk = βT (xf (k))Θ

TΨ(k) (10)

3. EVOLVING MECHANISMS OF THE
CLOUD-BASED METHOD

In this section the evolving procedure of the antecedent
part is described. The cloud-based method is capable of

evolving the structure in on-line manner using different
mechanisms.

3.1 Adding new clouds (fuzzy rules)

As we mentioned earlier this method starts with zero
clouds and the first cloud is initialized with the first data
sample. Moreover, when some requirements are fulfilled
new cloud (fuzzy rule) could be added, and usually, there
are certain criteria (detection of nonlinearity in the system,
preventing adding clouds based on outliers, etc.). In our
case we have four criteria for adding new clouds:

(1) The first criterion is related to the ’closeness’ of the
current data to all of the existing clouds. In case that
all the local densities in the current time stamp are
smaller from some threshold, which is mathematically
expressed as:

Cadd
1 = (γmax > max

i
(γi

k)) ;

where γmax ∈ [0, 1]. The default value of the param-
eter is 0.75, but in practice any other value from the
range could be used. Bigger value of the parameter
create more clouds, while smaller value add just few
clouds (new fuzzy rules).

(2) The second criterion complements the first one and
prevents creating new clouds based on outliers (see
Fig. 1). We wait certain number τadd of consecutive
samples which satisfy the first criterion Cadd

1 and after
that we add a new cloud:

Cadd
2 = (k > kC1 + τadd) ;

where kC1 is the number of consecutive samples
fulfilling criterion Cadd

1 . The value of the parameter
τadd is equal to the dimensionality of the regression
vector (τadd = na +nb). If the value of τadd is too big
one should think how to deal with the data points
kC1

which can be stored in a buffer and used for
initializing the next data cloud.

(3) The third criterion is the number of data samples nadd

that have to pass from the time stamp kadd of the last
added cloud:

Cadd
3 = (k > kadd + nadd) ;

where nadd is one of the design parameters of the pro-
posed method and in our previous work was always
set to 20 (Škrjanc et al. (2014), Andonovski et al.
(2015b), Andonovski et al. (2015a)).

(4) The last criterion is related to the maximum number
of the clouds cmax allowed to be added:

Cadd
4 = (cmax > c) ;

where c is number of already existing clouds.

Therefore, if all four criteria (Cadd
1 and Cadd

2 and Cadd
3

and Cadd
4 ) are satisfied then a new cloud is added. For this

adding mechanism, we have to set tree parameter γmax,
nadd and cmax.

3.2 Removing clouds (fuzzy rules)

Beside all of the criteria that try to prevent adding new
clouds based on outliers, we still found out that some of the
clouds are “less active” or “less informative”. The activity
is defined as relative number of data samples associated
with the cloud, counted from the moment of the cloud’s
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Fig. 1. The red dashed line represent the threshold γmax

and the blue line represent the value of maximal
density max(γi

k) at each step k. The outliers fulfill
criterion Cadd

1 , but new cloud is added after τadd
consecutive data points.

creation. The condition for removing clouds is expressed
as:

Crem
1 =

(
M i

k − ki
< ζ

1

c

)
i = 1, . . . , c ;

where ζ ∈ [0, 1] is a constant parameter. If ζ = 0 then
removing mechanism is disabled, while if ζ = 1 then
with each new added cloud the previous one is removed.
Choosing ζ = 1 is not a reasonable solution, and therefore
in practice the constant ζ should be within [0, 1), usually
0.1 (Dovzan et al., 2015).

When removing clouds we should be very careful and
conservative, because we do not want to remove a cloud
containing useful information. Using just first criterion
Crem

1 could possibly lead to such problem. Therefore,
beside the criterion Crem

1 we propose additional one for
removing “less informative” clouds. The non-informative
is a new property of the cloud and expresses the number
of data samples that are most far away from particular
cloud. For each data point xf (k) we calculate all the
local densities and find the one with the minimum value
(mini(γ

i
k)). That point is associated as “anti-data” to the

cloud with minimal density. The number of such points for
each cloud is denoted as M̃ i. Finally, second criterion is
defined as:

Crem
2 =

(
1− M̃ i

k − ki
<

ζ

2

)
i = 1, . . . , c ;

where the ζ is the same parameter as one in Crem
1 and has

the same value 0.1. The whole mechanism for removing
cloud is a logical combination (Crem

1 and Crem
2 ).

The whole procedure of the fuzzy cloud-based algorithm is
explained through the flowchart presented in Fig. 2. This
flowchart represents the procedure for one data sample,
and the same steps are repeated for each data sample
received. In Fig. 2 we can notice three steps: the identifying
of the antecedent part, evolving mechanism (adding and
removing clouds), and identifying the parameters of the
consequent part.

New data xf (k)

Calculate γi
k and βi

k
for i = 1, . . . , c

Associate x(k) with
cloud accorting to

the maxi(β
i
k)

Initialization of the
new cloud
μi

0, σ
i
0, P

i
0

Add
new
cloud?

YES

NO

Update μi
k and σi

k
for chosen cloud

Identification of the
parameters (rWLS):
Update: ψk, P

i
k, θ

i
k

Calculate ŷ(k)

Antecedent part

Evolving procedure

Consequent part

Clear the
parameters

μr
k, σ

r
k, P

r
k , θ

r
k

Remove
cloud?

YES

NO

Fig. 2. Cloud-based identification procedure (flowchart for
one data sample).

4. SIMULATION EXAMPLE

To evaluate the proposed method three sets of in-
put/output signals were acquired with simulation of the
TE process model. The first set of signals is called TRAIN
and it is used for acquiring the models for each output. The
other two sets (VAL1 and VAL2) were used for validation
(4-step prediction) of the obtained models. Furthermore,
the estimated output ŷ(k) was compared to the original
output signal y(k) and evaluated using the Mean Square
Error (MSE) which is defined as follows:

MSE =
1

N

N∑
k=1

(ŷ(k)− y(k))2 (11)

where N is the number of samples in the output signals.

Four different experiments were provided for testing the
new evolving mechanisms proposed in Section 3, as follows:
OEM (original evolving mechanism, without Cadd

2 and
removing), ADM (adding new clouds with delay Cadd

2 ),
ERM (removing mechanism) and NEM (new evolving
mechanism). All these experiments were compared to well-
established technique eFuMo proposed by Dovzan et al.
(2015). The parameters chosen for eFuMo are presented
in Table 2. The same parameters were used for identifying
all three models (Cost, Production, and Quality).
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Table 2. Chosen parameters of eFuMo method

γc γv λr τ cmax Nout kn

0.9999 0.9999 0.9999 80 20 50 3

For more appropriate and honest comparison of cloud-
based method and eFuMo, the parameters that have the
same meaning were chosen the same (e.g. γc = λr =
0.9999, τ = nadd = 80 and cmax = cmax = 20). The
evolving parameter of the cloud-based method was defined
bigger as the default value (γmax = 0.85).

For both methods, eFuMo and cloud-based, the same re-
gression vectors xf (k) were used. The proposed regressors
by Glavan et al. (2013a) were selected for each output
(model) as follows:

Cost : xf (k) = [y(k − 1), y(k − 2), Fp(k − 1),

Fp(k − 2), Fp(k − 4), R4(k − 1), R7(k − 1),

R7(k − 5), R9(k − 1), R9(k − 5), r2(k − 1),

r2(k − 4), r2(k − 5)]T

Production : xf (k) = [y(k − 1), y(k − 2), Fp(k − 1),

Fp(k − 5), R4(k − 1), R4(k − 4), R7(k − 1),

r2(k − 5)]T

Quality : xf (k) = [y(k − 1), y(k − 2), Fp(k − 1),

R4(k − 1), r2(k − 5)]T

The results of the validation are shown in Tables 3, 4,
and 5, for each output Cost, Production and Quality,
respectively. We can notice that on-line identification im-
proves the performance of the cloud-based algorithm in
comparison with the off-line mode. Moreover, the cloud-
based method performs better than eFuMo for modeling
the Cost and the Production, while in case of the Quality
eFuMo provides better results. Furthermore, we can com-
pare the results between the different evolving mechanisms
proposed in the paper. In some cases they improve the
performance of the algorithm, but unfortunately, in other
cases they provide worse results.

5. CONCLUSION

In this paper we focused on implementing new evolving
mechanisms for improving the performance of the cloud-
based identification method. These mechanisms protect
adding new clouds (rules) based on outliers and remove
existing ones which are not active or they do not obtained
enough information from the data. The proposed evolving
procedure was tested on sets of signals acquired from
the Tennessee Eastman process model. Three different
models were identified and evaluated using 4−step predic-
tion in on-line and off-line manner. Moreover the results
were compared with well established identification method
eFuMo. From the obtained results we can conclude that
the new evolving mechanisms in some cases are able to
improve the overall performance of the algorithm.
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